The north magnetic pole, also known as the magnetic north pole, is a point on the surface of Earth's Northern Hemisphere at which the planet's magnetic field points vertically downward (in other words, if a magnetic compass needle is allowed to rotate in three dimensions, it will point straight down). There is only one location where this occurs, near (but distinct from) the geographic north pole. The Earth's Magnetic North Pole is actually considered the "south pole" in terms of a typical magnet, meaning that the north pole of a magnet would be attracted to the Earth's magnetic north pole.
The north magnetic pole moves over time according to magnetic changes and flux lobe elongation Alt URL in the Earth's outer core. In 2001, it was determined by the Geological Survey of Canada to lie west of Ellesmere Island in northern Canada at . It was situated at in 2005. In 2009, while still situated within the Canadian Arctic at , it was moving toward Russia at between per year. North Magnetic Pole Moving East Due to Core Flux, National Geographic, 24 December 2009 In 2013, the distance between the north magnetic pole and the geographic north pole was approximately . As of 2021, the pole is projected to have moved beyond the Canadian Arctic to . NP.xy
Its southern hemisphere counterpart is the south magnetic pole. Since Earth's magnetic field is not exactly symmetric, the north and south magnetic poles are not antipodes, meaning that a straight line drawn from one to the other does not pass through the geometric center of Earth.
Earth's north and south magnetic poles are also known as magnetic dip poles, with reference to the vertical "dip" of the magnetic field lines at those points.
+Recent locations of Earth's magnetic (dip) poles, IGRF-13 estimate |
The direction of magnetic field lines is defined such that the lines emerge from the magnet's north pole and enter into the magnet's south pole.
Frank O. Klein, the director of the project, noticed that the fluxgate compass did not behave as erratically as expected—it oscillated no more than 1 to 2 degrees over much of the region—and began to study northern terrestrial magnetism. With the cooperation of many of his squadron teammates in obtaining many hundreds of statistical readings, startling results were revealed: The center of the north magnetic dip pole was on Prince of Wales Island some NNW of the positions determined by Amundsen and Ross, and the dip pole was not a point but occupied an elliptical region with foci about apart on Boothia Peninsula and Bathurst Island. Klein called the two foci local poles, for their importance to navigation in emergencies when using a "homing" procedure. About three months after Klein's findings were officially reported, a Canadian ground expedition was sent into the Archipelago to locate the position of the magnetic pole. R. Glenn Madill, Chief of Terrestrial Magnetism, Department of Mines and Resources, Canada, wrote to Lt. Klein on 21 July 1948:
(The positions were less than apart.)
In 2007, the latest survey found the pole at .L. R. Newitt, A. Chulliat, and J.-J. Orgeval, Location of the north magnetic pole in April 2007, Earth Planets Space, 61, 703–710, 2009 During the 20th century it moved , and since 1970 its rate of motion has accelerated from per year (2001–2007 average; see also polar drift). Members of the 2007 expedition to locate the magnetic north pole wrote that such expeditions have become logistically difficult, as the pole moves farther away from inhabited locations. They expect that in the future, the magnetic pole position will be obtained from satellite data instead of ground surveys.
This general movement is in addition to a daily or diurnal variation in which the north magnetic pole describes a rough ellipse, with a maximum deviation of from its mean position. Geomagnetism – Daily Movement of the North Magnetic Pole, Natural Resources Canada This effect is due to disturbances of the geomagnetic field by from the Sun.
As of early 2019, the magnetic north pole is moving from Canada towards Siberia at a rate of approximately per year.
NOAA gives the 2024 location of the magnetic north pole as 86 degrees North, 142 degrees East. By 2025, it is predicted that it will have drifted to 138 degrees East (same latitude).
The Polar Race was a biannual competition that ran from 2003 until 2011. It took place between the community of Resolute, on the shores of Resolute Bay, Nunavut, in northern Canada and the 1996 location of the north magnetic pole at , also in northern Canada.
On 25 July 2007, the was broadcast on BBC Two in the United Kingdom, in which Jeremy Clarkson, James May, and their support and camera team claimed to be the first people in history to reach the 1996 location of the north magnetic pole in northern Canada by car. Note that they did not reach the actual north magnetic pole, which at the time (2007) had moved several hundred kilometers further north from the 1996 position.
The direction in which a compass needle points is known as magnetic north. In general, this is not exactly the direction of the north magnetic pole (or of any other consistent location). Instead, the compass aligns itself to the local geomagnetic field, which varies in a complex manner over Earth's surface, as well as over time. The local angular difference between magnetic north and true north is called the magnetic declination. Most map coordinate systems are based on true north, and magnetic declination is often shown on map legends so that the direction of true north can be determined from north as indicated by a compass.
In North America the line of zero declination (the agonic line) runs from the north magnetic pole down through Lake Superior and southward into the Gulf of Mexico (see figure). Along this line, true north is the same as magnetic north. West of the agonic line a compass will give a reading that is east of true north and by convention the magnetic declination is positive. Conversely, east of the agonic line a compass will point west of true north and the declination is negative.
Like the north magnetic pole, the north geomagnetic pole attracts the north pole of a bar magnet and so is in a physical sense actually a magnetic south pole. It is the center of the region of the magnetosphere in which the Aurora Borealis can be seen. As of 2015 it was located at approximately , over Ellesmere Island, Canada but it is now drifting away from North America and toward Siberia.
|
|